3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration.

نویسندگان

  • Sha Huang
  • Bin Yao
  • Jiangfan Xie
  • Xiaobing Fu
چکیده

UNLABELLED Sweat glands perform a vital thermoregulatory function in mammals. Like other skin appendages, they originate from epidermal progenitors. However, they have low regenerative potential in response to injury, and whether adult epidermal progenitors could be specified to differentiate to a sweat gland cell lineage remains largely unexplored. We used bioprinting technology to create a functional in vitro cell-laden 3D extracellular matrix mimics (3D-ECM) with composite hydrogels based on gelatin and sodium alginate because of chemical and structural similarity to ECM components. To achieve specific cell differentiation, mouse plantar dermis and epidermal growth factor were synchronously incorporated into the 3D-ECM mimics to create an inductive niche for epidermal progenitor cells obtained from mice. The biological 3D construct could maintain cell viability, thereby facilitating cell spreading and matrix formation. In vitro data by immunofluorescence and gene expression assay of key cell-surface markers demonstrated that the bioprinted 3D-ECM could effectively create a restrictive niche for epidermal progenitors that ensures unilateral differentiation into sweat gland cells. Furthermore, direct delivery of bioprinted 3D-ECM into burned paws of mice resulted in functional restoration of sweat glands. This study represents the rational design to enhance the specific differentiation of epidermal lineages using 3D bioprinting and may have clinical and translational implications in regenerating sweat glands. STATEMENT OF SIGNIFICANCE Sweat gland regeneration after injury is of clinical importance but remains largely unsolved because of low regenerative potential and lack of a definite niche. Some studies have shown sweat gland regeneration with gene-based interventions or cell-based induction via embryonic components, but translation to clinic is challenging. The novelty and significance of the work lies in the fact that we design a 3D bioprinted extracellular matrix that provides the spatial inductive cues for enhancing specific differentiation of epidermal lineages to regenerate sweat glands, which is critical for treating deep burns or other wounds. Our studies are encouraging given the overwhelming advantages of our designed 3D bioprinting construct over other cell delivery technology in maintaining high cell proliferation; another interesting finding is that adult tissue components retain a gland lineage-inductive power as embryonic tissue, which can facilitate translation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D bioprinting matrices with controlled pore structure and release function guide in vitro self-organization of sweat gland

3D bioprinting matrices are novel platforms for tissue regeneration. Tissue self-organization is a critical process during regeneration that implies the features of organogenesis. However, it is not clear from the current evidences whether 3D printed construct plays a role in guiding tissue self-organization in vitro. Based on our previous study, we bioprinted a 3D matrix as the restrictive nic...

متن کامل

3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility.

Glioma is still difficult to treat because of its high malignancy, high recurrence rate, and high resistance to anticancer drugs. An alternative method for research of gliomagenesis and drug resistance is to use in vitro tumor model that closely mimics the in vivo tumor microenvironment. In this study, we established a 3D bioprinted glioma stem cell model, using modified porous gelatin/alginate...

متن کامل

Combinatorial extracellular matrices for human embryonic stem cell differentiation in 3D.

Embryonic stem cells (ESCs) are promising cell sources for tissue engineering and regenerative medicine. Scaffolds for ESC-based tissue regeneration should provide not only structural support, but also signals capable of supporting appropriate cell differentiation and tissue development. Extracellular matrix (ECM) is a key component of the stem cell niche in vivo and can influence stem cell fat...

متن کامل

Role of extracellular matrix and prolactin in functional differentiation of bovine BME-UV1 mammary epithelial cells.

Interactions between extracellular matrix (ECM) and epithelial cells are necessary for proper organisation and function of the epithelium. In the present study we show that bovine mammary epithelial cell line BME-UV1 cultured on ECM components, commercially available as Matrigel, constitutes a good model for studying mechanisms controlling functional differentiation of the bovine mammary gland....

متن کامل

Intravital Imaging Reveals Ghost Fibers as Architectural Units Guiding Myogenic Progenitors during Regeneration.

How resident stem cells and their immediate progenitors rebuild tissues of pre-injury organization and size for proportional regeneration is not well understood. Using 3D, time-lapse intravital imaging for direct visualization of the muscle regeneration process in live mice, we report that extracellular matrix remnants from injured skeletal muscle fibers, "ghost fibers," govern muscle stem/prog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biomaterialia

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2016